
INTERIOR POINT METHODS FOR OPTIMAL CONTROL OFDISCRETE-TIME SYSTEMSSTEPHEN J. WRIGHT �Abstract. We show that recently developed interior point methods for quadratic programming andlinear complementarity problems can be put to use in solving discrete-time optimal control problems, withgeneral pointwise constraints on states and controls. We describe interior point algorithms for a discrete timelinear-quadratic regulator problem with mixed state/control constraints, and show how it can be e�cientlyincorporated into an inexact sequential quadratic programming algorithm for nonlinear problems. The keyto the e�ciency of the interior-point method is the narrow-banded structure of the coe�cient matrix whichis factorized at each iteration.Key words. interior point algorithms, optimal control, banded linear systems.1. Introduction. The problem of optimal control of an initial value ordinary di�eren-tial equation, with Bolza objectives and mixed constraints, isminx;u Z T0 L(x(t); u(t); t) dt+ �f (x(T ));_x(t) = f(x(t); u(t); t); x(0) = xinit;(1.1) g(x(t); u(t); t) � 0; t 2 [0; T ]; gf (x(T )) � 0:Here, x : [0; T ] ! IRns, u : [0; T ] ! IRnc , L : IRns � IRnc � [0; T ] ! IR, �f : IRns ! IR,g : IRns � IRns � [0; T ]! IRng , gf : IRns ! IRnf . A discrete-time counterpart is the problemminxi;ui NXi=1Li(xi; ui) + �N (xN+1);xi+1 = fi(xi; ui); i = 1; � � � ; N; x1 �xed;(1.2) gi(xi; ui) � 0; i = 1; � � � ; N; gf (xN+1) � 0:E�cient algorithms have been proposed for various special classes of these problems.In the \unconstrained" case (that is, when g, gi and gf are absent), Newton-like methodsand conjugate gradient methods for (1.1) are described by Polak [27]; for (1.2), Newton'smethod, and its e�cient implementation, is discussed in Dunn and Bertsekas [8]. A varietyof quasi-Newton approaches have also been applied to the unconstrained version of (1.1); see,for example, Edge and Powers [9] and Kelley and Sachs [16], and the references therein. Inthe control-constrained case (in which gf is absent, and the states x and xi do not appear in gand gi), the problem is traditionally treated as a constrained optimization problem in u or ui.Because of the \pointwise" or separable nature of the constraints, methods of the gradient� Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439. Re-search supported by the Applied Mathematical Sciences subprogram of the O�ce of Energy Research, U. S.Department of Energy, under Contract W-31-109-Eng-38.1



projection class are easily implementable (see, for example, Demyanov and Rubinov [3],Dunn [5, 6]). In the �nite-dimensional problem, these methods have the advantage that theset of currently-active constraints can change extensively at each iteration, whereas \activeset" methods only allow a single change to the active set, which causes poor performancewhen there are many constraints. More recently, Newtonian scaling has been added togradient projection algorithms (see Gafni and Bertsekas [12], Dunn [7]) to improve theirasymptotic rate of convergence, and the resulting methods have proven to be useful for thecontrol-constrained version of (1.2), as we see in Section 6. Pantoja and Mayne [26] havedescribed a stagewise algorithm for the control-constrained case that, in a neighborhood ofa solution of (1.2), produces iterates that are identical to sequential quadratic programmingiterates. Instead of making use of the inherent structure in (1.2) at the level of the linearalgebra computations, as we do in this paper and also in [32, 31], Pantoja and Mayne exploitthe structure at a somewhat higher level.The most general cases of (1.1),(1.2), in which the functions g, gi, gf are nontrivialin both states and controls, are known to be signi�cantly more di�cult to solve than thespecial cases described above. Algorithms based on nonlinear programming techniques ap-pear to be the most promising. In these algorithms, both states and controls are treatedas unknowns and the state equation and \auxiliary" constraints as equality and inequalityconstraints, respectively. Miele [21] deals mainly with the case in which the auxiliary con-straints g in (1.1) are equalities (rather than inequalities) and proposes algorithms of thereduced gradient type, with features added to ensure near-feasibility of all iterates. Polak,Yang and Mayne [28] describe a �rst-order algorithm which makes use of barrier functionsfor the inequality constraints. Evtushenko [10, Chapter 6] describes a variety of augmentedLagrangian penalty function methods, in which (1.2) is reduced to an unconstrained prob-lem. Di Pillo, Grippo and Lampariello [4] describe a structured quasi-Newton method for aparticular augmented Lagrangian, and take advantage of the same feature which we exploitin this paper: bandedness of the coe�cient matrix which is factored at each iteration.In this paper, we focus on a linear-quadratic version of the discrete problem (1.2). Thiscan be formulated asminxi;ui NXi=1 rTi ui + zTi xi + 12(xTi Qixi + 2xTi Riui + uTi Siui)+ zTN+1xN+1 + 12xTN+1QN+1xN+1;xi+1 = Aixi +Biui + si; i = 1; � � � ; N; x1 �xed;(1.3) Giui +Hixi � gi; i = 1; � � � ; N; HN+1xN+1 � gN+1:Sequential quadratic programming algorithms for the nonlinear problem (1.2) give rise tosubproblems of this form at each iteration. The algorithm that we propose may be lesse�cient than other algorithms on special cases of (1.3) (see, for example, comparisons witha gradient projection algorithm for control-bounded problems in Section 6), but we claimthat it forms the basis of an e�cient general solution procedure for (1.3).2



For the continuous problem (1.1), solution of a problem of the form (1.3), or somethingsimilar, remains a \core" operation. In the numerical results of Section 6, we restrict atten-tion to simple discretizations of the continuous problems. Higher-order discretizations arepossible: for example, Cuthrell and Biegler [2] use collocation at Gauss points to convert(1.1) to a nonlinear programming problem. Many issues arise in the discretization process,particularly when the solution of (1.1) contains singular arcs (and so the �rst-order necessaryconditions give rise to a higher-index di�erential-algebraic equation). We will not discussthem further here, except to point out that the general methodology of this paper is applica-ble whenever discretizations with \local support" are used, since these lead to block-bandedlinear systems of the type described in Section 5.Our main task here is to show that interior point methods may be useful tools forsolving problems of the form (1.3), and that these methods can be embedded in inexactsequential quadratic programming algorithms to solve problems of the form (1.2). If (1.3)arises as a discretization of a continuous problem, alternative algorithms from mathematicalprogramming would seem to be less e�cient as N grows very large. For example, the numberof iterations required by active set methods (see Fletcher [11, Chapter 10]) could reasonablybe expected to be proportional to the number of constraints, that is, O(N). Since each suchiteration involves the solution of a certain narrow-banded linear system of dimension O(N),the total complexity would probably be (N2). Another possibility is to use algorithms of thegradient projection class, but these are di�cult to implement when both states and controlsare variable, because of the complexity of the feasible set in (1.3). We observe in Section 6that the number of interior point iterations required to solve (1.3) is often independent ofN and is always better than O(N1=2). Since the main task is each iteration also involvessolution of a linear system with a banded coe�cient matrix of dimension O(N), the totalamount of work is between O(N) and O(N3=2) in practice. Other researchers have also notedthat in many cases the iteration count is practically almost independent of N though, as weshow in the next section, formal analyses suggest that it should be O(N1=2).Interesting algorithms have recently been proposed by Rockafellar and co-workers [30, 36]for extended linear-quadratic programming, a class of problems that includes discrete-timelinear-quadratic optimal control problems. They aim to �nd the saddle point of a Lagrangianwhich, for multistage problems such as (1.3), has the property that it is decomposable withrespect to the primal variables when the dual variables are �xed, and vice versa. In Zhuand Rockafellar [36], primal-dual steepest descent and conjugate gradient algorithms whichtake advantage of this structure are used, and linear convergence results are proved. A�nite termination results is proved for the conjugate gradient algorithm. These algorithmstake advantage of the structure at a higher level than the linear algebra, but the O(N)complexity per iteration is similar to ours. An interesting question is whether structuredinterior point methods of the type discussed in this paper can be e�ciently used to solve theentire extended linear-quadratic programming class.3



We assume throughout that a convexity condition holds:" Qi RiRTi Si # is positive semide�nite for i = 1; � � � ; N ;QN+1 is positive semide�nite.(1.4)The second-order su�ciency conditions for (1.3) to have an isolated local solution are weakerthan this; however, (1.4) holds in practice for many problems.The remainder of the paper is laid out as follows. In Section 2, we introduce two classesof interior point algorithms for convex quadratic programming. These algorithms are de-scribed with respect to a general formulation of the problem (see (2.1)) rather than thespeci�c problem (1.3). Convergence theory for these algorithms is described. Section 3 dis-cusses some of the practical issues that arise in the implementation of these two algorithms,with reference again to the general formulation (2.1). In Section 4, we discuss an inexact se-quential quadratic programming algorithm for the general nonlinear programming problem.The convergence analysis can be derived from existing theory for mixed nonlinear comple-mentarity problems, and the stopping criterion for each quadratic subproblem is shown to beeasily evaluated. In Section 5, we show how the algorithms described in the preceding threesections can take special advantage of the structure inherent in the problems (1.2) and (1.3),by using linear algebra techniques for banded linear systems as described in Wright [33, 32].Although we do not deal with it in this paper, the whole approach is conducive to parallelimplementation: the task of evaluating of the functions and gradients in (1.2) can clearly bedivided between independent processors, while parallel solution of the banded linear systemcan be carried out by using the techniques discussed in [33].In the remainder of the paper, superscripts on vector or matrix quantities representiteration numbers, while subscripts are used either to distinguish di�erent components of avector, or to distinguish di�erent stages of the optimal control problem, as in (1.3). Sub-scripts on scalars denote iteration numbers. k:k denotes the Euclidean norm, unless otherwisespeci�ed.2. Interior-point algorithms for convex quadratic programming. In this sec-tion, we give the general outline of recently developed interior point algorithms for convexquadratic programming. These algorithms usually also apply to linear complementarityproblems, and in the descriptions which follow we will make use of the connection betweenthese two classes of problems. It has been a source of some frustration in recent years thatthe interior point algorithms with desirable theoretical properties (polynomial complexity,superlinear convergence) tend to be slow in practice, while little can be proved about thealgorithms that perform exceptionally well. Developments continue to occur at a rapid pace,and the performance gap is closing.We will outline two interior point methods, one which has polynomial complexity andsuperlinear convergence and one which tends to be faster in practice but which does nothave these nice theoretical properties. Both algorithms can be motivated within a common4



simple framework, which we describe after stating the problem and discussing the relationshipbetween the primal and dual formulations.We assume that the convex quadratic program has the following form:minz 12zTQz + cTz; Az = b; Cz � d;(2.1)where z 2 IRn, b 2 IRme, d 2 IRm, etc., and Q is positive semi-de�nite. We assumethroughout that (2.1) has an optimal solution (z; �) = (z�; ��), where � is a vector of slacksfor the inequality constraints. The dual of (2.1) ismaxv;w;y �12vTQv � bTw � dTy; Qv +ATw + CTy + c = 0; y � 0:(2.2)The relationship between problems (2.1) and (2.2) is outlined in the following proposition(see, for example, Monteiro and Adler [23, Propositions 2.1{2.3] and Mangasarian [20, Sec-tion 8.2]):Proposition 2.1.(i) If (2.1) has an optimal solution (z�; ��), then there exist w� and y� such that(v;w; y) = (z�; w�; y�) is an optimal solution for (2.2). Conversely, if (2.2) hasan optimal solution, then so does (2.1).(ii) If (z�; ��) and (v�; w�; y�) are optimal solutions of (2.1) and (2.2), respectively, then(y�)T�� = 0. Conversely, if (v�; w�; y�) is a feasible solution of (2.2) such thatz = v�, � = d�Cv� are feasible in (2.1) and (y�)T (d�Cv�) = 0, then (v�; d�Cv�)and (v�; w�; y�) are optimal solutions of (2.1) and (2.2), respectively.Since we have assumed that a primal solution exists, it follows from this Propositionthat there is a quartet (z; �; w; y) such thatQz +ATw + CTy + c = 0(2.3) �Az + b = 0(2.4) � = �Cz + d � 0(2.5) y � 0;(2.6) yT� = 0:(2.7)If (z; �; w; y) is feasible with respect to the �rst four of these conditions (2.3){(2.6), thenyT� = yT (d� Cz)= yTd� zT (�c�Qz �ATw)= yTd+ wT b+ zTQz + zTc;which is the di�erence between the primal and dual objective function values, or dualitygap. Interior point methods maintain feasibility with respect to (2.3){(2.6) while gradually5



reducing the duality gap to zero. In fact, all (y; �) iterates of these algorithms remain in thestrictly feasible set de�ned byF+ = f(y; �) j (z; �; w; y) satis�es (2.3){(2.6) for some (z;w); y > 0; � > 0g:(This fact justi�es the use of the term \interior".) The progress of the algorithm towards asolution can be gauged by examining the duality gap �Ty itself, or some potential functionconstructed from it, for example (y; �) = �p ln(yT�) � mXj=1 ln(yj�j);(2.8)where �p is a �xed barrier parameter. Besides being elements of F+, it is desirable for eachiterate to remain in the vicinity of a \central path" de�ned byC = f(�; y) 2 F+ j �iyi = (�Ty)=m; i = 1; � � � ;mg:(2.9)(Measures of closeness to C will be discussed later.) Maintaining closeness to the central pathhelps in retaining the strict interiority property and facilitates the convergence analysis.In general, each step of the method aims to retain feasibility with respect to (2.3){(2.6),while moving closer to the central path and/or reducing the duality gap. The latter twoaims may be satis�ed by performing a Newton-like linearization of the equations�iyi = �; i = 1; � � � ;m;or, more succinctly, MY e = �e;(2.10)where M = diag(�1; �2; � � � ; �m), Y = (y1; y2; � � � ; ym), e = (1; 1; � � � ; 1)T , and � � 0. If weset � = 0, then we are clearly aiming to satisfy the complementarity condition (2.7) withoutregard to the central path, while if we set � = (ykT�k)=m where (�k; yk) is the current iterate,then we are aiming to move closer to the \nearest point" on the central path in some sensewhile not reducing the duality gap. As we see below, � is often chosen to lie strictly betweenthese two extremes, so that it partially satis�es both aims.We note here that (2.3){(2.7) is a linear complementarity problem, in which the coe�-cient matrix 264 Q AT CT�A 0 0�C 0 0 375is positive semi-de�nite. The \linear complementarity" point of view is useful when dis-cussing convergence of the interior point algorithms, and when describing the choice of aninitial point, as we do in the next section. 6



The interior point framework can now be speci�ed. Suppose an initial point (z0; �0; w0; y0)that satis�es (2.3){(2.6) with strict inequalities in (2.5){(2.6) is available. At the currentiterate (zk; �k; wk; yk), we generate the search direction (�zk; ��k; �wk; �yk) by solving thefollowing system of equations:Q�zk +AT�wk + CT�yk = 0A�zk = 0C�zk + ��k = 0(2.11) Y k��k +Mk�yk = �ke� Y kMke:Elimination of ��k yields the (symmetric, inde�nite) system264 Q AT CTA 0 0C 0 �(Y k)�1Mk 375264 �zk�wk�yk 375 = 264 00��k(Y k)�1e+Mke 375 :(2.12)Now, we set zk+1 = zk+�k�zk, �k+1 = �k+�k��k, wk+1 = wk+�k�wk, and yk+1 = yk+�k�yk,where �k is chosen to retain feasibility of the new iterate with respect to (2.3){(2.6), amongother things.Potential reduction algorithms choose �k to depend on the duality gap: speci�cally�k = �k�k ; �k def= ykT�k;(2.13)where the value of �k will be discussed below. �k is then chosen so that  (yk + �k�yk; �k +�k��k) achieves at least certain constant reduction over  (yk; �k), where  is de�ned in(2.8). The following result can be used to demonstrate polynomial complexity of the basicpotential reduction algorithm. It is proved by Kojima, Mizuno and Yoshise [17] for the linearcomplementarity problem in standard form, but can be easily extended to the \mixed" linearcomplementarity problem (2.3){(2.7).Theorem 2.2. Suppose that(i) The set C is nonempty(ii) �k � �p = m+pm in (2.8) and (2.13)(iii) m � 2(iv) �k = 0:4 minj=1;���;mqykj �kjk(Y kMk)�1=2(�k�k e� Y kMke)k :Then the iterates produced by the interior point algorithm satisfy (yk+1; �k+1) �  (yk; �k)� 0:2; k = 0; 1; � � � :7



Corollary 2.3. Suppose that the assumptions of Theorem 2.2 hold, and let L be anynumber with L > � (y0; �0)=pm. Then the iterates generated by the algorithm will satisfy�k = ykT�k � e�L for all k � 5 [ (y0; �0) +pmL].Proof. The result follows immediately from Theorem 2.2 together with the fact that (y; �) � �pmL) yT� � e�L:Polynomial complexity follows if  (y0; �0) = O(pmL), since the time for each iterationis polynomial in the problem size. (Strictly speaking, the standard assumption that all datain the problem (2.1) is rational is also needed.)The algorithm of Theorem 2.2 can certainly not be expected to yield superlinear con-vergence, and indeed it is very slow in practice. Other researchers have analyzed algorithmsin which the choices of �p, �k and �k are relaxed. However, the choices of �k and �k thatyield the most e�cient practical algorithms lie outside the scope of this analysis. We usethe following heuristics (which are similar to those utilized by Han, Pardalos and Ye [13]):initially: �min m1:5the k-th iteration:�k  max(�min; 1=�k);calculate the step (�zk; ��k; �wk; �yk);set ��k = maxf� j � � 1; yki + ��yki � 0; �ki + ���ki � 0; i = 1; � � � ;mg,if ��k � :5 then �min :5 � �min;if ��k = 1 then �min  2 � �min;if ��k = 1 then �k  1 else �k  ���kTake the step of length �k and go to next iteration;Here, the constant � is set to :9995.In our experience, the choice of �k should be manipulated to be as large as possible, whileallowing steplengths �k of 1, since these steps were usually observed to produce the largestreductions in the duality gap. The heuristic above was found, after some experimentation, tobe quite successful. As noted by Zhang, Tapia and Dennis [35], the choice �k = 1=�k (whichtakes e�ect during the last few iterations) ensures quadratic convergence of the duality gapto zero.The second algorithm we consider is of the \predictor-corrector" type. For linear pro-gramming problems, this algorithm is described by Mizuno, Todd and Ye [22] and Ye, Tapiaand Zhang [34]. The analysis is extended to linear complementarity problems by Ji, Potraand Huang [15]. The algorithm makes use of the idea of an \�-neighborhood" of the central8



path C, de�ned as follows:C(�) = ((y; �) 2 F+ ����� 




 MY e(yT�=m) � e




 � �) ;where � 2 [0; 1). (Note that C = C(0).) It is assumed that the initial point (z0; �0; w0; y0)has (y0; �0) 2 C(14). To complete the de�nition of the algorithm, we need only specify thechoices for �k and �k:(i) For k even, choose �k = 0 and �k to be the largest value in (0; 1] such that(yk + �k�yk; �k + �k��k) 2 C(12);(ii) for k odd, choose �k = (ykT�k=m) and �k = 1.Ji, Potra and Huang show that (yk; �k) 2 C(14) for all even k and (yk; �k) 2 C(12) for all oddk. Their main results are summarized in the following theorem:Theorem 2.4. ([15, Theorem 3.1 and Corollary 4.2]) For the predictor-corrector algo-rithm described above, �k+2�k � 1 � 14pm; k = 0; 2; 4; � � � :Suppose that (yk; �k) ! (y�; ��) as k ! 1, where (z�; ��; w�; y�) is a strictly com-plementary solution of (2.1), that is, one for which exactly one of y�i and ��i is zero fori = 1; 2; � � � ;m. Then the convergence is two-step superlinear, that islimk!1; k even �k+2�k = 0:The two main implementation issues for this algorithm are� The choice of �k for odd k. We solve the scalar equationg(�) = 
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2� 14 (yk + ��yk)T (�k + ���k)2m2 = 0by using a safeguarded search in the interval [0; 1] with an algorithm that has localthird-order convergence. Typically about three iterations are required. The cost ofthis step is much less than the cost of solving the system (2.12).� The choice of an initial point which satis�es the centrality condition(y0; �0) 2 C(14):(2.14)When no prior information about the starting point is known, the \cold start" deviceto be discussed in the next section can be used to choose such a point. In some9



circumstances, however, a good initial estimate of the solution which does not satisfy(2.14) is available. In this case, we perform only corrector iterations (i.e., setting� = (yT�)=m) with a line search, until a point which satis�es (2.14) is encountered.During this start-up phase, the line search parameter for each step is chosen toapproximately minimizeg(�) = 




 (Mk + ��Mk)(Y k + ��Y k)(yk + ��yk)T (�k + ���k)=me� e




2 ;while retaining (y + ��y; � + ���) 2 F+.3. Implementation details for interior point algorithms. We now discuss twoimplementation issues that arise in both of the interior point method discussed in the previoussection, namely, the choice of an initial point which satis�es (2.3){(2.6) and the e�cient andstable solution of the linear system (2.12).In some situations, choice of a feasible initial point is made easier by the form of theinequality constraints. Perhaps the most common example for problems of the form (1.3) isone in which the only inequality constraints are bounds on the controls. Controls ui which liestrictly between their bounds can be chosen, and initial values of the states xi and costatespi can be obtained by substituting into the state and adjoint equations, respectively. Theslacks �i are completely determined by the choice of ui. The remaining unknowns to bechosen are the multipliers yui and yli that correspond to the upper and lower bounds on ui,respectively. By taking the derivative of the Lagrangian for (1.3) with respect to ui, weobtain the following equation that must be satis�ed by yui and yli:RTi xi + Siui + ri �BTi pi+1 + yui � yli = 0; i = 1; 2; � � � ; N:(3.1)Since, for centrality, it is also desirable to have the products �ui yui and �liyli as close as possibleto each other for i = 1; 2; � � � ;m, we choose some \target" value � for these products, andthen pick yui and yli that satisfy the simple optimization problemminyui ; yli k�ui yui ��k2�ui + k�liyli ��k2�li ;yui � �100�ui ; yli � �100�li ; yui ; yli satisfy (3.1):Although this heuristic often produces near-central points, it is sometimes necessary to applya few centering steps to obtain a point which satis�es (2.14).When the choice of a feasible point is not so easy (as is often the case when both controland state constraints are present) the problem can be arti�cially augmented by one extra �and y component, in such a way that a feasible choice can be made trivially. Monteiro andAdler [23] and Kojima, Mizuno and Yoshise [18] show how to construct feasible initial pointsthat are on or near the central path by introducing arti�cial variables into convex quadratic10



programs and linear complementarity problems, respectively. Here, we describe a schemefor choosing a near-central point which is tailored to the form of (2.3){(2.6). A modi�cationof this scheme is useful when a good initial estimate of the solution is available; we describethis also.We introduce a (large, positive) number ~L 2 IR, whose actual magnitude will be dis-cussed below. Using ~L, de�ne the quantitiese = (1; 1 � � � ; 1)T ;a1 = � 1~L "c + ~Lm2CTe# ;a2 = � b~L;ĉ = ~L � 1m2 + 1m� ;and consider the following augmented version of (2.3){(2.7):Qz +ATw + CTy + a1ŷ + c = 0;(3.2) �Az + a2ŷ + b = 0;(3.3) � = �Cz + eŷ + d � 0;(3.4) �̂ = �aT1 z � aT2w � eTy + ĉ � 0;(3.5) y � 0;(3.6) ŷ � 0;(3.7) yT� + ŷ�̂ = 0:(3.8)A little computation shows that the following point is feasible with respect to all butthe last (complementarity) condition:z0 = 0; w0 = 0; �0 = ~Le+ d; y0 = ~Lem2 ; ŷ0 = ~L; �̂0 = ~Lm2 :This point can be placed arbitrarily close to the central path by a su�ciently large choice of~L, since ŷ0�̂0 = ~L2m2 ; y0i �0i = ~L2m2 + ~Lm2di; for i = 1; � � � ;m:By viewing (3.2){(3.8) as a linear complementarity problem, we now show that thesolutions of this augmented problem correspond to solutions of (2.3){(2.7), for ~L su�cientlylarge. (3.2){(3.8) can be stated as the mixed linear complementarity problem" M11 M12�MT12 M22 # " s1s2 #+ " r1r2 # = " 0t2 # ; s2 � 0; t2 � 0; sT2 t2 = 0;(3.9) 11



where s1 = " zw # ; s2 = " ŷy # ; r1 = " cb # ; r2 = " d̂c # ; t2 = " �̂� # ;M11 = " Q A�AT 0 # ; M12 = " CT a10 a2 # ; M22 = " 0 e�eT 0 # :Clearly, M11 and M22 are positive semi-de�nite. The following Lemma shows that any twosolution triples for (3.9) must be complementary:Lemma 3.1. Let (s�1; s�2; t�2) and (s1; s2; t2) be solutions of (3.9). Then s�T2 t2 = sT2 t�2 = 0.Proof.(s2 � s�2)T (t2 � t�2) = (s2 � s�2)T h�MT12(s1 � s�1) +M22(s2 � s�2)i= (s2 � s�2)TM22(s2 � s�2)T � (s1 � s�1)TM12(s2 � s�2)= (s2 � s�2)TM22(s2 � s�2)T + (s1 � s�1)TM11(s1 � s�1):Now, since sT2 t2 = s�T2 t�2 = 0,0 = s�T2 t2 + sT2 t�2 + (s2 � s�2)TM22(s2 � s�2) + (s1 � s�1)TM11(s1 � s�1):Each quantity on the right-hand side is non-negative, so the result follows.It remains to specify the required magnitude of ~L. This is made precise in the followingresult:Theorem 3.2. Suppose that (2.1) has an optimal solution (z�; ��), with correspondingdual vectors (w�; y�). Suppose further that ~L is chosen large enough thatĉ > aT1 z� + aT2w� + eTy�:(3.10)Then z = z�; w = w�; y = y�; � = ��(3.11) �̂� = ĉ� (aT1 z� + aT2w� + eTy�) > 0; ŷ� = 0;is a solution of the augmented problem (3.2){(3.6).Let z, w, y, �, ŷ, �̂ satisfy (3.2){(3.6). Then ŷ = 0, and hence (z; �; w; y) is a solutionof (2.1),(2.2).Proof. The �rst statement is easily veri�ed by substituting in the conditions (3.2){(3.8).To prove the second statement, we use Lemma 3.1. Since the vectors (��; �̂�) constructedin the �rst part of the theorem must be complementary to the pair (y; ŷ) which is assumedto exist in the second part (that is, yT�� + ŷ�̂� = 0), we have that ŷ = 0. It follows that(z; �; w; y) satis�es the conditions (2.3){(2.7) and, therefore, is a solution of (2.1),(2.2).In our implementation of the predictor-corrector algorithm, we start by setting ~L =1000pn+me +mkdk. If after a number of iterations we still have �̂ < ŷ, then ~L is multiplied12



by 10, and the process is repeated. For the primal-dual algorithm, we do not place too muchemphasis on starting close to the central path. We start by setting ~L = max(1; kdk) and,if �̂ < ŷ after a few iterations, then ĉ is increased (as suggested by Theorem 3.2) and theproblem is re-initialized.When good initial guesses of the solution of (2.1),(2.2) are available , we can modify thestrategy above to take advantage of the available information. This situation can arise whenthe linear-quadratic problem arises as a subproblem in the sequential quadratic programmingalgorithm for nonlinear programming. It can also arise in a multilevel method, where theresult of solving the problem on a coarse grid is being used as a starting point for a �nergrid.Suppose that the initial guess (�z; ��; �w; �y) has �� > 0, �y > 0 and d �C�z > 0, and thatc+Q�z +AT �w + CT �y � 0b�A�z � 0d � C�z � �� � 0:Choosing some threshold criterion �L with 0 < �L � 1, we de�ne a vector �e 2 IRm such that�ei = ( 1 if 0 < �yi � �L��i0 otherwise:Then k�eT �yk � �Lk��k1 is also small. Now, choose ~L > 0 which is similar in magnitude tokc+Q�z +AT �w + CT �yk and kb�A�zk, and seta1 = � 1~L(c+Q�z +AT �w + CT �y);a2 = � 1~L(b�A�z):Choose ĉ such that �̂0 = ĉ� aT1 �z � aT2 �w � �eT �y � 100~Lm mXi=1 ��i�yi:Replacing e by �e, we see that the following is a feasible initial point for (3.2){(3.7):z0 = �z w0 = �w; y0 = �y;�0 = d� C�z + ~L�e; ŷ0 = ~L; �̂0 = ĉ� aT1 �z � aT2 �w � �eT �y:Moreover, since ŷ0�̂0 = 100m mXi=1 �0i y0i ;13



this starting point is not too far from the central path provided that (��; �y) is not too faraway.This \hot start" technique can be modi�ed for the case in which (d � C�z)i is slightlynon-positive for i = 1; � � � ;m (a situation which arises frequently in practice). When thisoccurs, �ei is usually zero; our strategy is to replace this zero value with a positive value,chosen so that (d+ C�z + ~L�e)i = ~Lm:Finally, we turn to two of the issues that arise in the solution of the linear system (2.12).When the interior point techniques described thus far are applied to the problem (1.3),the variables and equations can be ordered so that the matrix in (2.12) has a banded struc-ture, and hence the system (2.12) can be solved in O(N(ns + nc)3) operations. However, ifaugmentation of the problem is necessary as in (3.3){(3.8), the banded structure is destroyed.This problem can be overcome by forming and factorizing a Schur complement. Speci�cally,a simple row and column reordering of the augmented version of (2.12) yields:266664 Q AT CT a1A 0 0 �a2C 0 �(Y k)�1Mk �eaT1 aT2 eT � �̂kŷk 377775266664 �zk�wk�yk�ŷk 377775 = 266664 00��k�k (Y k)�1e+Mke��k�k (ŷk)�1 + �̂k 377775 :(3.12)An elementary argument shows that (3.12) can be solved at the cost of one factorizationof the coe�cient matrix in (2.12) (the (1; 1) block in (3.12)) and two forward- and back-substitution with the resulting factors (each involving a di�erent right-hand side), plus a fewvector inner products.Finally, we turn to the numerical issue of factorizing the matrix in (2.12), given thatsome of its diagonals ��ki =yki are unbounded as k !1. This problem can be overcome bya simple scaling procedure, which we sketch here. De�ne a diagonal scaling matrix Dk byDkii = min(1;qyki =�ki ):If \strict complementarity" holds (See Theorem 2.4 for the de�nition) then as k !1,��i = (d� Cz�)i = 0 ) limk �ki =yki = 0;��i = (d� Cz�)i > 0 ) limk �ki =yki =1:Suppose, without loss of generality, that the rows of C and d can be partitioned such thatC = " CACI # ; d = " dAdI # ; CAz� = dA; CIz� < dI :Then, Dk can be partitioned accordingly asDk = " DkA 00 DkI # = " I 00 DkI # for k su�ciently large:14



The matrix we actually factorize is then264 I I Dk 375264 Q AT CTA 0 0C 0 �(Y k)�1Mk 375264 I I Dk 375 ! 266664 Q AT (CA)T 0A 0 0 0CA 0 0 00 0 0 �I 377775 :The latter matrix is then as well-conditioned as the data in the equality-constrained quadraticprogram minz 12zTQz + cTz; Az = b; CAz = dAwill allow. A similar scaling can be applied to the additional diagonal element in the aug-mented system (3.12).4. Inexact Sequential Quadratic Programming. Consider now the general non-linear programming problemmin L(z); h(z) = 0; g(z) � 0;(4.1)where z 2 IRn, h 2 IRme, g 2 IRm. We write the Lagrangian for (4.1) asL(z;w; y) = L(z) + wTh(z) + yTg(z):If z� is a solution of (4.1), there exist w� and y� such that@L@z (z�; w�; y�) = 0; h(z�) = 0; g(z�) � 0; y� � 0; (y�)T g(x�) = 0:(4.2)These are �rst-order necessary conditions. Without loss of generality, g(z�) and y� can bepartitioned as g(z�) = 264 g+(z�)g0(z�)g�(z�) 375 ; y� = 264 y�+y�0y�� 375 ;where g+(z�) = 0; y�+ > 0;g0(z�) = 0; y�0 = 0;g�(z�) < 0; y�� = 0:In addition to (4.2), we assume that the following strong second order su�ciency conditionshold: For all �z 6= 0 with �Tz d hd z (z�) = 0; �Tz d g+d z (z�) = 0;we have �Tz "@2L@z2 (z�; w�; y�)# �z > 0:(4.3) 15



We also assume that the linear independence condition2664 d hd z T (z�)d g+d z T (z�)d g0d z T (z�) 3775 has full row rank(4.4)applies. Given (4.2), (4.3) and (4.4), Robinson [29, Theorem 4.1] shows that (z�; w�; y�) is aregular solution of the mixed nonlinear complementarity problem (NLCP)dLdz + d hd z Tw + d gd z Ty = 0;h(z) = 0;(4.5) g(z) � 0; y � 0; yTg(z) = 0:(\Regularity" is referred to as \strong regularity" in [29].)A common variant of the sequential quadratic programming algorithm for (4.1) obtainsa new iterate (zj+1; wj+1; yj+1) from the current iterate (zj; wj; yj) by solving the quadraticprogram min 12�Tz Qj�z + �Tz cj; Aj�z = �h(zj); Cj�z � �g(zj);(4.6)where Qj = @2L@z2 (zj; wj; yj); cj = dLdz (zj); Aj = d hd z T (zj); Cj = d gd z T (zj):Then zj+1 is set to zj + �z and wj+1 and yj+1 are set to the Lagrange multipliers at thesolution of (4.6). The subproblem (4.6) can be restated as a linear complementarity problemQj�z + (Aj)Tw + (Cj)Ty = �cj�Aj�z = h(zj)(4.7) � Cj�z � g(zj); y � 0; yT (Cj�z + g(zj)) = 0:When Qj is positive semide�nite, (4.6) has the form (2.1) and the coe�cient matrix on theleft hand side of (4.7) is positive semide�nite. Pang [25] suggests the following algorithm forsolving (4.5) and hence (4.1):initially:choose (z0; w0; y0), set j = 0each iteration:�nd (�z; w; y) such that 16



kHj(�z; w; y)k � �j 






264 dLdz (zj) + d hd z (zj)wj + d gd z (zj)yjh(zj)min(yj;�g(zj)) 375






 ;(4.8) where Hj(�z; w; y) = 264 Qj�z + (Aj)Tw + (Cj)Ty + cjh(zj) +Aj�zmin(y;�Cj�z � g(zj)) 375 ;(4.9) set (zj+1; wj+1; yj+1) = (zj + �z; w; y);j  j + 1.Here, �j is a scalar to be speci�ed below. Note that Hj(�z; w; y) = 0 at an exact solutionof (4.6). When Qj is positive semide�nite, we can use the algorithm of Section 2 to obtainan approximate solution to (4.6), terminating the inner iterations when the criterion (4.8)is satis�ed.The following convergence result can be obtained by making straightforward modi�ca-tions to Theorem 1 of Pang [25]. Its proof is omitted.Theorem 4.1. Suppose that (z�; w�; y�) is a solution triple for (4.1), that L, h and gare twice continuously di�erentiable in a neighborhood of z� and that conditions (4.2), (4.3)and (4.4) are satis�ed. Then there is a constant � > 0 such that(i) if �j � � for all j, and if the initial point (z0; w0; y0) is su�ciently close to (z�; w�; y�),then the algorithm (4.8) produces a sequence f(zj; wj; yj)g which converges to (z�; w�; y�).(ii) If, in addition to the assumptions in (i), we have that limj!1 �j = 0, then theconvergence of f(zj; wj ; yj)g is superlinear.(iii) Suppose, in addition to the assumptions in (i), that the second derivatives of L, hand g satisfy H�older continuity conditionskr2L(z1)�r2L(z2)k � cLkz1 � z2k
;kr2gi(z1)�r2gi(z2)k � cgkz1 � z2k
; i = 1; � � �m;kr2hi(z1)�r2hi(z2)k � chkz1 � z2k
; i = 1; � � �me;for all z1, z2 in a neighborhood of z�, where 
 2 (0; 1] and cL, cg and ch are positiveconstants. Then if�j = O0B@






264 dLdz (zj) + d hd z (zj)wj + d gd z (zj)yjh(zj)min(yj;�g(zj)) 375







1CA ;the convergence of f(zj; wj ; yj)g to (z�; w�; y�) has Q-order (1 + 
).Remarks. 17



1. In Pang [25], only non-mixed NLCP are considered. For mixed NLCP (i.e., thosewith equality relations as well as inequalities) the de�nition of Hj has to be modi�edas described above, but the same techniques can be used in the convergence analysis.2. The value of � is speci�ed more precisely in [25]. It depends on the regularityproperties of (4.5) at the point (z�; w�; y�) and the size of the neighborhood inwhich the iterates (zj; wj ; yj) are constrained to lie.3. Pang proves a result like Theorem 4.1 (iii) only for the case 
 = 1. The extensionto 
 2 (0; 1] is immediate.4. A variant of Theorem 4.1 can be proved for the case in which only the initial z isaccurate (i.e., kz0 � z�k is small, but ky0 � y�k and kw0 � w�k may be large). Thedetails are tedious, and we will not pursue this option further.As already noted, we can use the algorithm of Section 2 to solve (4.6), after making theidenti�cations b = �h(zj), d = �g(zj), Q = Qj, c = cj, etc, and z = �z. The followingLemma gives an alternative expression for the quantity kHj(�z; w; y)k which is needed in4.8: Lemma 4.2. If the algorithm of Section 2 is used to solve (4.6) with the identi�cationsdescribed above and if the augmentation (3.2){(3.8) is used, then at each (inner) iterate(�kz ; wk; yk), we havekHj(�kz ; wk; yk)k = 







2664 (ŷk=~L) hcj + ~Lm2 (Cj)T ei(ŷk=~L)h(zj)min��Cj�kz � g(zj); yk� 3775







 :Proof. The result follows immediately from (3.2){(3.4) and the de�nitions of a1 and a2if we observe that all iterates of the algorithm of Section 2 are feasible with respect to allconstraints in (3.2){(3.7).5. Tailoring the algorithm to problems (1.2) and (1.3). We turn now to theoptimal control problem (1.3), and describe the special structure of the system (2.12) forthis problem. We suppose that xi 2 IRns, i = 1; � � � ; N + 1 and ui 2 IRnc , i = 1; � � � ; N . Forsimplicity of exposition, assume that the number of auxiliary constraints at each stage is �xedat m. By introducing adjoint variables pi, i = 2; � � � ; N + 1, which are Lagrange multipliersfor the state equation, and slack vectors �i, i = 1; � � � ; N +1 and Lagrange multiplier vectorsyi, i = 1; � � � ; N + 1 for the auxiliary constraints, we arrive at a set of optimality conditions
18



that correspond to (2.3){(2.7):Qixi +Riui + zi �ATi pi+1 + pi +HTi yi = 0; i = 2; � � � ; N ;QN+1xN+1 + zN+1 + pN+1 +HTN+1yN+1 = 0;RTi xi + Siui + ri �BTi pi+1 +GTi yi = 0; i = 1; � � � ; N ;xi+1 �Aixi �Biui = si; i = 1; � � � ; N ;Giui +Hixi + �i = gi; i = 1; � � � ; N ;HN+1xN+1 + �N+1 = gN+1;�i � 0; yi � 0; i = 1; � � � ; N + 1;�Ti yi = 0; i = 1; � � � ; N + 1:(5.1)The states and controls xi and ui correspond to the primal variables zi in Section 2, whilethe pi correspond to w. We now order the variables in the system (2.12) as follows:(�u1; �y1; �p2; �x2; �u2; �y2; � � � ; �uN ; �yN ; �pN+1; �xN+1; �yN+1):If we order the equations (5.1) similarly, the coe�cient matrix in (2.12) has the form:266666666666666666666666666666666664
S1 GT1 �BT1G1 �V k1 0�B1 0 0 II Q2 . . .. . . . . . II Qi Ri HTi �ATiRTi Si GTi �BTiHi Gi �V ki 0�Ai �Bi 0 0 II Qi+1 . . .. . . . . . II QN+1 HTN+1HN+1 �V kN+1

377777777777777777777777777777777775 ;(5.2)
where V ki = diag((�ki )1=(yki )1; � � � ; (�ki )1=(yki )m). This matrix has dimension N(2ns + nc +m) +m, and bandwidth (2ns + nc +m� 1), and hence can be factorized in O(N(ns + nc +m)3) operations. Back- and forward-substitution with the resulting triangular factors takesO(N(2ns + nc +m)2) operations.For the nonlinear problem (1.2), application of sequential quadratic programming (SQP)gives rise to problems of the form (1.3). This is described in Wright [32] for the case in whichauxiliary constraints are absent. The Lagrangian for (1.2) isL(x; u; p; y) = �L(x; u; p) + NXi=1 yTi gi(xi; ui) + yTN+1gf (xN+1)19



where �L(x; u; p) = NXi=1 Li(xi; ui) + �N(xN+1) + NXi=1 pTi+1(xi+1 � fi(xi; ui)):At the current SQP iterate (x; u; p; y), we de�neQi def= @2L@x2i ; Ri def= @2L@xi@ui ; Si def= @2L@u2i ;zi def= @ �L@xi ; ri def= @ �L@ui ; si def= @ �L@pi+1 gi def= �gi(xi; ui);Ai def= @fi@xi ; Bi def= @fi@ui ; Hi def= @gi@xi ; Gi def= @gi@ui ;and solve the resulting linear-quadratic problem to obtain the SQP step.6. Computational results. We present computational results on some problems fromthe literature. In each case, the problems are discretizations of continuous-time problems.An Euler discretization of problem (1.1) can be obtained by dividing the time interval intoN equal intervals, with ti = (i�1)=N , i = 1; � � � ; N+1, and �nding xi � x(ti) and ui � u(ti)by solving minxi;ui 1N NXi=1 L(xi; ui; ti) + �f(xN+1);xi+1 = xi + 1N f(xi; ui; ti); x1 = xinit;g(xi; ui; ti) � 0; gf (xN+1) � 0:A solution that is accurate to O(N�1) is obtained. A midpoint- or trapezoidal-rule dis-cretization of (1.1), which is accurate to O(N�2), has the form (1.2) in some circumstances.We use such a discretization for Example 4 below.For the inexact SQP algorithm, we use termination criteria that are consistent with(4.8),(4.9) and Theorem 4.1, that is�k def= 8<: NXi=1 24
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2 + kmin(yi;�gi(xi; ui))k235+kmin(yN+1; gN+1(xN+1))k2o1=2 � 10�10qN(2ns + nc +m)(where all quantities are evaluated at the k-th SQP iterate, and the min(:; :) function appliescomponentwise.) If the problem is linear-quadratic, this criterion is used to terminate the�rst (and only) SQP iteration. Otherwise, the interior point algorithm that is used to solvethe (k + 1)-st SQP subproblem is terminated after j iterations ifkHj(�xi; �ui; pi; yi)k � mid(�min; �2k; �max);20



where �max = 10�2qN(2ns + nc +m) and �min = 10�10qN(2ns + nc +m):Here,Hj is de�ned as in (4.9) to be a measure of inexactness for the linear-quadratic subprob-lem. According to Theorem 4.1, quadratic convergence should be observed if this criterionis used.We tested both interior point methods discussed in Sections 2 and 3. As discussed earlier,our implementation of the predictor-corrector method is guaranteed to converge, while ourimplementation of the potential reduction method is not. The latter is faster in practice,however.Although the motivation for the algorithms described in this paper has been problemswith state constraints and mixed state/control constraints, we �rst report the results of testson two problems in which the only constraints are bounds on the controls. E�cient algo-rithms for this problem are well known, e.g., the two-metric gradient projection algorithmsof Bertsekas [1] and Dunn [7] and the second-order DDP algorithms of Jacobson and Mayne[14]. We compare the interior point algorithms with the implementation of the Bertsekasalgorithm described in Wright [32], on three examples from the literature. These are Eulerdiscretizations of the following three continuous-time problems:Example 1: (Bertsekas [1]) ns = 2, nc = 1, m = 2.min Z 10 6u(t)2 + 2x1(t)2 + x2(t)2 dt; " _x1_x2 # = " x2�x1 + u # ;ju(t)j � B; x1(0) = 15; x2(0) = 5;where B is a positive constant to be speci�ed below. This is a linear-quadratic problem, andhence only one SQP iteration is resquired. The optimal control tends to be on its bound foronly a small part of the interval [0; 1].Example 2: Same as Example 1, but with objective functionmin Z 10 2x1(t)2 + x2(t)2 dtThis problem has a bang-bang solution. When B = 1, there is a single switching point fromu(t) = �1 to u(t) = 1 at about t = :512. When B = 2, the switch from u(t) = �2 tou(t) = 2 occurs at about t = :500.Example 3: (Jacobson and Mayne [14, Section 2.4.7]) ns = 2, nc = 1, m = 2.min Z 2:50 x1(t)2 + u(t)2 dt; " _x1_x2 # = " x2�x1 + 1:4x2 � :14u3 + 4u # ;ju(t)j � B; x1(0) = �5; x2(0) = �5;21



where, again, B > 0 will be speci�ed later. This problem has nonlinear dynamics, and somore than one SQP iteration will usually be required.In each case, the feasible starting point u(t) � 0 is used, with the other quantities beingchosen according to the discussion in Section 3. Apart from taking advantage of the feasibleinitial point and the bandedness, the interior point algorithms did not otherwise exploit thespecial structure of the constraints during the factorization of the coe�cient matrix (5.2),though this would have increased the e�ciency. We preferred to use the same codes for alltest examples, to demonstrate the versatility of the approach, rather than to customize thealgorithm for each class of problems.Results for these problems are shown in Tables 6.1{6.3. We make the following obser-vations:� The data reported in each table consists of the number of iterations required foreach algorithm, and the amount of CPU time required on a Solbourne 5E/900workstation. For the interior point algorithms on the nonlinear problems, the num-ber of SQP iterations (\major iterations") is reported along with the total numberof interior point iterations (\minor iterations"). For the linear quadratic problems,only one SQP iteration is needed, so we report just the number of interior pointiterations. Each SQP iteration requires the evaluation of the objective and con-straint functions and their �rst and second derivatives. Each interior point iterationrequires the setup and factorization of a matrix of the form (5.2).� Iteration counts for the predictor-corrector algorithm do not include the correctoriterations which are sometimes necessary when a \hot start" is used. These correctoriterations are needed to move the initial point closer to the central path, and thereare typically only a few of them.� for the nonlinear problems, the \hot start" strategy of Section 3 was used on all butthe �rst major iteration.� The factor of 4 to 6 performance di�erence between the potential reduction algorithmand the predictor-corrector algorithm was typical for all examples that we tried.� Although the two-metric gradient projection algorithm was clearly fastest for allexamples on which it worked, it frequently failed for certain values of the boundB. We believe that this is because of near-degeneracy: at the borderline betweenregions in which the bound is active and regions in which it is inactive, there are a fewcomponents whose active/inactive status is di�cult to determine. In the languageof Section 2, one of yi and �i is zero and the other is very small. This phenomenondid not appear to a�ect the performance of the interior point methods.� no results are given for the two-metric gradient projection algorithm for Example 2.Our implementation of this algorithm always used exact second derivatives in thecomputation of the second-order part of the step. Global convergence is not assuredunless a more complicated strategy is used, and indeed our implementation alwaysfailed to make any progress from the initial point on these examples. (Essentially,22



Table 6.1Results for Example 1 with N = 1000. Second column shows number of active constraints at the solution.For each of the three algorithms, number of iterations and CPU time in seconds on a Solbourne workstationis reported. When B = 1:4, two-metric gradient projection terminated prematurely after 5 iterations whenB = 1:40 with a near-optimal objective function value.two-metric GP potential reduction predictor-correctorB # active iters/time IP/time IP/time1.00 183 3/1.69 16/12.3 76/59.01.25 126 4/2.15 16/12.3 72/55.81.40 94 17/13.0 74/58.7Table 6.2Results for Example 2 with N = 1000. Problem has a bang-bang solution.potential reduction predictor-correctorB IP/time IP/time1.0 15/11.7 74/58.62.0 13/11.5 72/57.7for bang-bang problems, the two-metric gradient projection algorithm should reduceto a �rst-order gradient projection algorithm.)We turn now to some examples with state and mixed control/state inequality constraints,for which the interior point algorithms were speci�cally devised. We report results for thefollowing two linear-quadratic examples:Example 4: ns = 4, nc = 1. min 4Xi=1 x2i (4:2);_x1 = �0:5x1 + 5x2_x2 = �5x1 � 0:5x2 + u_x3 = �0:6x3 + 10x4_x4 = �10x3 � 0:6x4 + uxi(0) = 10; i = 1; : : : ; 4;ju(t)j � 1; xi(4:2) � 1; i = 1; : : : ; 4:Versions of this problem have been discussed by a number of authors, including Jacobson andMayne [14, page 85] (who exclude the terminal inequality constraints) and Longsdon [19].The problem has a bang-bang solution with eight switching times. It is solved in [19] by usinga discrete nonlinear programming formulation, and in [14] by using a second-order method23



Table 6.3Results for Example 3 with N = 1000. Number of active constraints at the solution is reported in thesecond column. For the interior point algorithms, the number of SQP (major) iterations, number of interiorpoint (minor) iterations, and CPU time on a Solbourne workstation is reported. The two-metric gradientprojections algorithm terminates with the objective function at 115% of its �nal value when B = 1:0, andwith objective function at 107% of its �nal value when B = 0:5two-metric GP potential reduction predictor-correctorB # active iters/time SQP/IP/time SQP/IP/time1.0 408 fails 6/20/18.5 7/144/135.0.5 640 fails 5/22/18.8 6/146/127.2.0 218 7/3.68 7/20/18.1 8/116/116.Table 6.4Results for Example 4 with di�erent values of the discretization parameter N . Runge-Kutta integrationwith the �nal u(t) was used to obtain the �nal function value. CPU times are in seconds on a Cray Y-MP.potential reduction predictor-correctorN �nal f IP/time IP/time500 1.00423296 15/3.54 80/18.52500 1.00357374 17/20.3 110/127.for problems with control bounds and bang-bang solutions. We discretize the problem byapproximating the ODEs by a midpoint rule.Example 5: Same objective function, dynamics and initial conditions as Example 1, butwith constraints: u(t) � 0:2; 3u(t) + 2x2(t) � 4:Results are shown in Tables 6.4 and 6.6. The computations for Example 4 were per-formed on a Cray Y-MP, which was observed in our experiments to be only about six timesfaster than the Solbourne workstation. The �nal function value of f = 1:00357374 obtainedfor the larger version of Example 4 compares with a �nal value of f = 1:00347 obtainedby Longsdon [19], who required over 6 hours of CPU time on a VAX 6320 to compute hissolution. A comparison of the two solutions appears in Table 6.5. For Example 5, the CPUtime required for the potential reduction algorithm is observed to be very nearly proportionalto N , while the slow growth in the number of iterations in the predictor-corrector algorithmproduces a slightly greater observed complexity. Table 6.7 shows that the number of activeconstraints at the solution is also O(N), as we would expect.Finally, we describe experience with two nonlinear problems. These areExample 6: Van der Pol problem, with state constraint. ns = 2, nc = 1.min Z 50 x1(t)2 + x2(t)2 + u(t)2 dt; " _x1_x2 # = " (1 � x22)x1 � x2 + ux1 # ;24



Table 6.5Comparison of control pro�les for computed solutions of Example 4.Longsdon [19] Interior Point, N = 2500(f = 1:00347) (f = 1:00357374)Switching time u Switching time u0.0 -1.0 0.0 -1.00.11198 1.0 0.1100 1.00.89979 -1.0 0.8980 -1.01.36428 1.0 1.3650 1.02.16960 -1.0 2.1680 -1.02.62063 1.0 2.6200 1.03.43619 -1.0 3.4356 -1.03.87530 1.0 3.8774 1.0Table 6.6Results for Example 5 with di�erent values of the discretization parameter N . CPU times are in secondson a Solbourne workstation. potential reduction predictor-correctorN IP/time IP/time100 20/2.29 108/11.21000 20/23.1 172/192.10000 19/221. 328/3693.Table 6.7Active constraints for Example 5N 100 1000 10000active ui = :2 components 18 146 1431active 3ui + 2xi;2 = 4 components 2 21 20725



Table 6.8Results for Example 6 with di�erent values of the discretization parameter N . CPU times are in secondson a Solbourne workstation.N # active SQP iters potential reduction inner iters CPU time100 42 5 8,11,4,6,2 2.461000 415 5 1,6,6,7,7 21.810000 4096 4 5,14,16,10 361.Table 6.9Results for Example 7 with di�erent values of the discretization parameter N . CPU times are in secondson a Solbourne workstation.N # active SQP iters potential reduction inner iters CPU time100 43 4 8,5,8,1 1.101000 428 4 9,8,18 17.410000 4294 3 14,16,28 297.x1(t) � �0:3; t 2 [2:5; 5]; x1(0) = 0; x2(0) = 1:From the given starting point, the convexity condition (1.4) does not hold at the solution,but we still observe convergence.Example 7: (Di Pillo et. al. [4, Example 2]) ns = nc = 1, m = 1min Z 10 x(t)2 + u(t)2 dt; _x = x2 � u;x(t) � 0:9; x(1) � 1; x(0) = 1:We show results for SQP with potential reduction inner iterations in Tables 6.8 and 6.9.In these examples, the computation appears to scale at between O(N) and O(N3=2).7. Conclusions. We have described the use of interior point techniques in discrete-time optimal control problems. The computational results we report in Section 6 for thelienar-quadatic problems appear to be similar in e�ciency to those reported by Zhu andRockafellar [36], who performed computations with randomly generated examples on similarworkstation equipment.Our approach bears some similarity to one described by Ohno [24]. Ohno treats the �rst-order stationarity conditions for (1.2), and the complementarity conditions yTi gi(xi; ui) = 0as a system of nonlinear equations, which are then solved by a di�erential dynamic pro-gramming method that is similar to Newton's method. This is similar to performing only\predictor" iterations in the predictor-corrector algorithm, and we not would expect theesulting algorithm to be robust. In fact, Ohno observes that his algorithm requires a verygood initial guess in order to converge. Moreover, as discussed above, our algorithm can beused as the \inner loop" of a more sophisticated algorithm in which approximate �rst andsecond derivatives and global convergence strategies can be employed.26
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